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THE AXISYMMETRIC WAVE TRANSMISSION
PROPERTIES OF PRESSURIZED FLEXIBLE TUBES
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The axisymmetric waves propagating within a pressurized, fluid-filled orthotropically
stiffened tube are investigated. The dispersion curves for these waves are plotted and the
waves transferring energy through the shell or fluid are identified. The effect of internal
pressurization and axial membrane stress is also considered. It is found that positive
pressurization did not cause stiffening of unbraided rubber tubes. Fluid loading caused
large changes to the fluid dominated wave speed but only small changes to the axial wave
in the shell.

7 1997 Academic Press Limited

1. INTRODUCTION

Pipes are used in many engineering applications for conveying gases and fluids over a wide
range of temperatures and pressures. Applications include hydraulics, fluid transfer,
cooling water and fuel supply. Unfortunately, the pipe shell and contained fluid are also
paths for vibrational energy from the pumping devices to the various receiving structures.

The vibration of fluid-filled pipes has been considered [1, 2] by using fundamental
equations from reference [3]. Dispersion curves of wave types in straight fluid-filled pipes
indicate that frequently the n=0 and n=1 waves were the most significant for energy
transfer in practical situations. The n=0 waves are propagating axisymmetric waves in
the shell and fluid. The n=1 wave is equivalent to a bending wave in a beam. Three sorts
of n=0 waves are possible, denoted s=1, s=2 and s=0. The energy of the s=1 wave
resides mainly in the fluid, but is strongly influenced by the wall flexibility. The s=2 wave
is predominantly a compressional wave in the shell, but the Poisson ratio effect, and hence
the wave speed are affected by the contained fluid. The s=0 wave is a torsional wave
which is independent of the presence of the fluid within the shell.

Dispersion curves for waves with higher order circumferential mode orders were also
presented in reference [11], many of which were experimentally confirmed on a straight
pipe [4].

Given that axial waves with n=0 and n=1 circumferential mode orders are expected
to be the most significant, efforts are being made [5, 6] to predict the coupled response
of three-dimensional fluid-filled pipework systems by using the transfer matrix approach.

If it is thought that a vibrational problem is associated with a pipework system, it us
usually necessary to quantify this problem prior to using attenuation devices. This
procedure has two difficulties. The first is the means of measuring the dynamic pressure
within the pipe with minimum interference, and the second is to establish a means of
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quantifying the relative contributions of the shell and fluid vibrations to the overall power
transmitted by the coupled pipe and fluid.

A solution of the first problem has been presented in reference [7] in which a
non-intrusive circumferential transducer is described for measuring the radial response of
the s=1, s=2 axisymmetric waves (n=0). This transducer detects only the radial pipe
shell motion and cannot distinguish between the radial contributions of the s=1 and s=2
waves. The equations of motion of the s=1, s=2 waves and closed form solutions for
the axial wave numbers have also been presented [7]. In reference [8] it was shown how
the power transmitted by the fluid and the shell in the two n=0 propagating waves (s=1,
s=2) can be measured simultaneously by using a combination of circumferential
transducers and accelerometers.

The vibrational power in empty pipes has been studied [1] for the n=1 bending wave
and n=0 compressional wave. Some measurements on beams which relate to pipes at low
frequencies have been made [9]. Measurements and theory of power transmission of higher
order circumferential waves in empty pipes have been reported [10].

An assessment of the power transmission in pipes is obviously very useful in defining
the magnitude of the problem, and making a comparison with other troublesome sources
of vibration. Once such an assessment has been made a suitable attenuation device needs
to be selected. Various types are available, namely mufflers, accumulators and flexible
tubes. Mufflers utilize a change in cross-section to reflect acoustic waves, but with an all
metal construction are not very effective in reducing vibration transmission. Accumulators
use an offset air-filled bag to reflect acoustic waves, but again make little impression on
the vibration of the shell. Flexible tubes and bellows, constructed of braided rubber, offer
some attenuation to both acoustic and vibrational waves by reducing the wave speeds.

Of the above devices the flexible tubes or bellows may have most potential inasmuch
as they attenuate both the fluid-borne waves and the structure-borne waves. If this is not
the case energy is transmitted past the discontinuity by the uncontrolled mechanism, and
reconverted to other wave types at the next band.

The present application of flexible tubes as pipes is frequently not very satisfactory for
several reasons. To withstand the high internal pressures the rubber requires fibre or wire
braiding which stiffens the tube, reducing the impedance change relative to that of a steel
pipe. The internal pressure causes further stiffness to the pipe [11, 12]. Increasing frequency
also causes large stiffening because the compliance relies upon significant radial wall
motion at low frequencies. The lateral wall motion becomes restricted by the wall inertia
at frequencies above the ring frequency (typically 100 Hz), and so the pipe appears stiff
in the axial direction.

These phenomena do not appear to be well explained in the literature and so a study
is given here to investigate the axisymmetric wave transmission of a fluid-filled,
orthotropic, pressured and axially tensioned tube. The outcome of this study is the
presentation of some dispersion curves identifying the behaviour of various wavetypes
subject to the controlling parameters. A second paper provides calculations of input and
transmission characteristics.

2. THEORY: EQUATIONS OF MOTION AND AXISYMMETRIC WAVENUMBERS FOR A
FLUID-FILLED TUBE

2.1. 

The objective of this section is to establish the equations of motion of a fluid-filled
pressurized pipe. In particular, the contribution of the internal or external pressure is to
be studied as this can soften or harden the pipe. The analysis is limited to axisymmetric
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Figure 1. The co-ordinates and displacement sign convention.

waves as these are most significant for the transmission of energy within the fluid [1]. The
tube is considered to be orthotropic to allow for rubber wall material stiffened by wire at
various helix angles. Allowance is also made for axial static forces in the wall.

The pipe has a mean radius a and wall thickness h, and is assumed to be thin such that
h/a�1. The co-ordinate system is given in Figure 1; x and z are the axial and radial
positions, u and w are the displacements in these directions.

2.2.   

The forces, moments and associated displacements are shown in Figures 2 and 3. Nx and
Nu are the forces per unit length in the shell plane, and in the circumferential direction,
respectively M and Q are the bending moments and shear forces about the circumference.
Px and Pz are the axial and circumferential components of the pressure, P, acting on the
shell.

Considering equilibrium in the axial direction for an axisymmetric wave, one has

−Nx
1w
1x

12w
1x2 + a

1Nx

1x
− aP

1w
1x

= arhü. (1)

If the axial force in the shell has the form Nx =N0 +N where N0 is the static preload, and
N is the variable part, the equation of motion becomes approximately

−aN0
1w
1x

12w
1x

+ a
1N
1x

− aP
1w
1x

= arhü. (2)

The first term is non-linear and of low order, and so will be neglected in what follows.

Figure 2. The forces on an element of radius a and shell thickness h.
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Figure 3. The forces on a section of an element.

For equilibrium in the radial direction,

adu0Nx +
1Nx

1x
dx1 sin (f+ df)−afuNx sin f+ aduP01+

w
a1 01+

1u
1x1

+adu
1Q
1x

dx−Nudxdu= arhẅ.

This reduces to

aP01+
w
a

+
1u
1x1−Nu + a

1N
1x

1w
1x

+ aN0
12w
1x2 + a

1Q
1x

= arhẅ. (3)

The non-linear term (a1N/1x) (1w/1x) will be neglected in subsequent analysis.
The term involving N0 corresponds to the string-in-tension problem. The shear

force–bending moment relationship is obtained by taking moments about the
circumferential axis,

1M/1x=Q. (4)

Combining equations (4) and (3) gives

aP01+
w
a

+
1u
1x1−Nu +

a12M
1x2 + aN0

12w
1x2 = arhẅ. (5)

2.3.  

The strains ou and ox in the circumferential and radial directions are

ou =w/a, ox = 1u/1x. (6a, b)

2.4.    

The stress–strain relationship for a two-dimensional surface, in which there is no stress
variation in the radial direction normal to the plane is [13]

sx =E'x [ox + nuou ], su =E'u [ou + nxox ], (7a, b)

where E'x =Ex /(1− m2), E'u =Eu /(1− m2) and m2 = nxnu . sx and su are the normal stresses
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in the axial and circumferential directions. ox and ou are the normal strains in the axial and
circumferential directions. For a shell with orthotropic properties Ex , Eu and nx , nu are the
corresponding Young’s moduli and Poisson ratios. An approximate means for predicting
these for a fibre elastomer is presented in the Appendix.

2.5. – 

The force/length terms in the axial and circumferential directions Nx and Nu are

Nx = sxh, Nu = suh. (8a, b)

The moment/length, M, about the shell mid-line is

M=g
h/2

−h/2

sxz dz.

2.6.  –

The bending moment about the circumference M is related to the radius of curvature
by

M=−B12w/1x2, (9)

where B=E'xh3/12. For axisymmetric waves, 12w/1u2 =0.

2.7.    

Equations (7), (8) and (9) may now be substituted into equations (2) and (5) to give the
coupled wave equations. For axial equilibrium,

aE'xh $12u
1x2 +

nu

a
1w
1x%− ap0

1w
1x

= arhü,

or

aE'xh $12u
1x2 + (nu − gp /gE )

1w
a1x%= arhü, (10)

where the normalized pressure is gp = p0a/E'uh, and the ratio of the Young’s moduli is
gE =Ex /Eu. The dynamic and static pressures are related by P= p0 + p̃. The dynamic
pressure is neglected in this expression.

For radial equilibrium,

aN0
12w
1x2 −E'uh $wa + nx

1u
1x%+ ap̃− aB

14w
1x4 + ap0 0wa +

1u
1x1= arhẅ. (11)

The travelling wave solutions, in which waves travelling to be right have positive
wavenumbers ks , may be expressed as u=Us e−iksx and w=Ws e−iksx. Then equation (10)
becomes

(V2/gE − a2
s )Us =ias (nu − gp /gE )Ws , (12)

where V2 =v2/v2
r 'vr = azE'u /r is the ring frequency in rad/s and as = ksa is the

normalized axial wavenumber.
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Equation (11), on substitution into it of the travelling wave solution, becomes

Ws [V2 −1+ gp − xa2
s − a4

s r]+ a2p̃/E'uh=−ias [nx − gp ]Us, (13)

where x=N0/E'uh is the normalized tension and r= gEh2/12a2 is the normalized bending
stiffness term.

2.8.   

If the fluid pressure is assumed constant across the section it can be shown [7] that for
a harmonic pressure variation, the pressure is related to the wall radial motion Ws by

p̃=Ps e−iksx, Ps =[−2Kf /1− (as /af )2] [Ws /a], (14)

where Kf is the fluid bulk modulus and af = avzrf /Kf . rf is the fluid density. On
substitution of equation (14) into equation (13),

Ws $V2 −1+ gp − xa2
s − a4

s r−
b

1− (as /af )2%=−ias [nx − gp ]Us , (15)

where the fluid loading term b is

b=2Kfa/E'uh.

The two coupled equations are now equations (12) and (15). By eliminating Us from these
equations, a polynomial for as may be obtained:

V2 −1+ gp − xa2
s − a4

s r−
b

1− (as /af )2 −
a2

s [nx − gp ] [nu − gp /gE ]
(V2/gE )− a2

s
=0,

or

1− gp −V2 + xa2
s + a4

s r+
ba

2
f

a2
f − a2

s
+ a2

s
(nx − gp )(nu − gp /gE )

(V2/gE )− a2
s

=0. (16)

The polynomial can now be expanded out:

(1− gp −V2 + b)
V4

o2c
+ a2

s
V2

gEc $V20 x

gE
+1+c1+ c1 − b+(gp −1) (1+c)%

+a4
s [1− gp − c1 −V2$1+

x

gEc
(1+c)+

rV2

g2
Ec%

+ a6
s $x−

r
gEc

V2(1+c)%+ a8
s r, (17)

where c=V2/gEa
2
f and c1 = (nx − g)(nu − gp /gE ).

The normalized wavenumber, as , has four possible pairs of values corresponding to four
wave types. These are plotted as a function of V, the normalized frequency in the next
section. These wavenumbers could be substituted back into the equations of equilibrium
to obtain the constituent motions for each wave type.
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3. CURVES OF WAVENUMBER AGAINST FREQUENCY

The wavenumber polynomial in equation (17) was solved by using a MATLAB
programme, POLYCOEFF. Four solutions in non-dimensional wavenumber squared a2

s

or (ksa)2 were obtained as functions of the non-dimensional frequency, V=v/vr . The ring
frequency occurs when the circumference is equal to one wavelength of a compressional
wave. For frequencies below the ring frequency the behaviour of a pipe is ‘‘tube-like’’ with
membrane forces dominant. For frequencies greater than the ring frequency, the behaviour
of the pipe shell is plate-like, and the bending forces within the shell thickness become
dominant.

The four values, s=1, 2, 3 and 4, of the non-dimensionalized axial wavenumber
squared, a2

s , can be positive, negative or complex. On taking the square root, as (the
non-dimensional wavenumber) takes three possible forms. The first is a positive value of
a2

s yielding 2as . These are positive and negative real roots corresponding to axial travelling
waves in each direction. Waves of this type are the most important because they are
responsible for energy transfer. The second wave type is associated with negative values
of a2

s . These yield positive and negative imaginary roots describing exponentially decaying
waves near the source of vibration. Complex values of a2

s give rise to a complex conjugate
pair, as , a*s . These correspond to a type of decaying standing wave which seems to occur
when there is the possibility of energy transfer by two or more mechanisms. These
contribute only to the reactive part of the transfer functions [1, 2] as they are not
responsible for energy transfer.

The real imaginary wavenumbers are plotted out in Figures 4–11 for different parameter
combinations. Investigated here are the effects of fluid loading, positive and negative
internal pressure and shell axial tension. The parameters used in these calculations are
displayed in Table 1. For all tests a wall thickness/radius h/a of 0·1 was used. The shell
was of isotropic material, setting the gE ratio to unity.

Figure 4. The non-dimensional wavenumbers (ka) versus the non-dimensional frequency (va/c). Light
fluid loading (Perspex/air) (b=2.4×10−4), no preloads (gp =0, x=0). (a) Real part; (b) imaginary part.
s values: - - -, 1; ——, 2; – – –, 3; · · · ·, 4.
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Figure 5. The non-dimensional wavenumbers (ka) versus the non-dimensional frequency (va/c). Heavy
fluid loading (Perspex/water) (b=4·5), no preloads (gp =0, x=0). (a) Real part; (b) imaginary part. Key as
for Figure 4.

It should be noted that there is a little discussion concerning the allocation of roots, i.e.,
s=1, 2, etc., to particular wave types. The convention used here is to associate the
wavenumber locus described by a simple power law (giving a linear curve on the log–log
plots used here) with a particular wave type, even if it crosses the locus of another wave
type. The argument is that if the slope of the locus or wavespeed is unchanged then the
same physical phenomenon occurs. This procedure is in conflict with that usually adopted.
This is that root loci converging to an apparent intersection do not actually cross but
diverge after moving close, exchanging characters (or physical wave type); thus one root
locus can be associated with two or more physical phenomena. The first mentioned scheme
is adopted, therefore, to avoid this confusion.

3.1.    (/) (b=2·35×10−4),  

First the case of light fluid loading, is considered, when the term b (equation (15)) is
less than unity. This could be a steel shell filled with water or, as in this case, a Perspex
shell filled with air. The internal static pressure and axial wall stresses are both zero. The
normalized wavenumbers ksa (s=1, 2, 3, 4) are given in Figure 4 as functions of the
frequency normalized to the ring frequency (V).

The s=2 wave has the lowest real wavenumber, and so is associated with the fastest
propagating wave. The unit slope is almost unchanged over the whole frequency range.
The locus passes in the vicinity of unit normalized wavenumbers at the ring frequency,
from which it may be deduced that this refers to the non-dispersive axial compression wave
in the shell travelling at a wave speed c2, given by

c2 = [E/r(1− m2)]1/2. (18)

The kink at the ring frequency would be revealed as a sharp trough by finer frequency
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resolution. The energy transmission at this frequency is suppressed by the radial motion
of the ring resonance as a vibration absorber.

The other wave with a real wavenumber below the ring frequency is denoted s=1, and
is the propagating acoustic wave within the fluid. The wave speed is almost that for the
acoustic wave in a hard-walled duct, i.e.,

c1 = (Kf /rf )1/2, (19)

as would be expected for the low fluid loading value, b. This wave changes little with the
ring frequency transition.

The last two waves, s=3, 4 are associated with axisymmetric bending of the tube shell
about the mid-line of the tube circumference, not bending of the whole tube as in the n=1
wave. At frequencies below the ring frequency these waves cannot propagate because of
the restraint of the cross-section. The waves are a complex conjugate pair with equal values
in the real and imaginary components:

a3,a4 =
12 i

z2 01− m2

r 1
1/4

. (20)

These waves have a wavenumber of large magnitude and so would decay rapidly away
from the excitation point, transferring little energy.

When Vq 1 these two roots become a propagating bending wave, s=3 (real
wavenumber),

a3 = (V2/r)1/4, (21)

and an exponentially decaying bending wave,

a4 = i(V2/r)1/4, (22)

Figure 6. The non-dimensional wavenumbers (ka) versus non-dimensional frequency (va/c). Very heavy fluid
loading (soft rubber/water) (b=4×104), no preloads. (a) Real part; (b) imaginary part. Key as for Figure 4.
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Figure 7. The non-dimensional wavenumbers (ka) versus non-dimensional frequency (va/c). Very heavy fluid
loading (soft rubber/water) (b=4×104), internal positive or negative pressure (gp =20·75, zero axial force
(x=0). (a) Real part; (b) imaginary part. Key as for Figure 4.

exactly as in a plate of thickness h (the tube thickness). The bending wave is therefore
responsible for energy transfer of out of plane waves in the shell above the ring frequency.

3.2.    (/) (b=4·5),   (x=0, g =0)
For the case of a Perspex pipe filled with water the fluid loading becomes heavy, and

the term b (equation (15)) becomes greater than unity. This has the effect of significantly
coupling the tube and fluid through the radial movement of the tube.

The lowest real wavenumber seen in Figure 5(a) is again the compressional wave in the
shell, s=2. This wave propagates at a speed

c2 = (E/r(1− m2))1/2, (23)

as in an infinite plate. There is little radial wall motion (or Poisson ratio effect) due to the
difficulty in compressing the fluid within the tube.

The other propagating wave, with a real wavenumber, below the ring frequency is the
s=1 wave. This is the ‘‘Korteweg wave’’ [14] which has a normalized wavenumber

a1 =va [2rf a/Eh) (1− m2)]1/2. (24)

For a hard-walled pipe this would be the fluid plane wave travelling at the speed of sound.
However, as the wall stiffness decreases this wave slows and the elastic strain component
becomes associated with elastic pipe wall breathing rather than the fluid bulk modulus.
Above the ring frequency the wall motion is increasingly prohibited by the wall inertia and
the wavenumber becomes that of water within a hard-walled tube,

a1 =va (rf/Kf )1/2, (25)
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as with the air previously in Figure 4(a). The wavenumber for water is about a quarter
of that for air.

The bending waves, s=3, 4, are not greatly affected by the presence of the water, except
around the ring frequency. The values of the non-propagating waves below the ring
frequency and the propagating waves above the ring frequency are similar to those of the
air-filled tube discussed previously. This implies that the energy of the bending waves is
largely within the shell, and so could be controlled by the wall properties.

The cases of this section were covered in reference [1], and the same conclusions were
reached.

3.3.     (b=4×104) ( /) (x=0, g=0),
 

In Figure 6 are given the normalized wavenumbers for a very soft rubber tube (E=106

N/m2) filled with water. b takes the value 4×104, indicating high fluid loading. This type
of tube could be considered for noise and vibration suppression. It does not appear that
this case has been covered in previous literature.

For frequencies less than the ring frequency the lowest real wavenumber is the s=2
compressional wave in the shell. This is a propagating wave as described in the previous
two cases. This wave continues above the ring frequency in the same form. As in the
previous example, the presence of the water prohibits radial motion of the tube. The
wavespeed corresponds to the compressional wave in the plate (equation (23)).

The fluid-borne Korteweg wave, s=1, is a propagating wave with a real wavenumber
described by equation (24), up to the ring frequency. At higher frequencies this wave
becomes a propagating, bending wave in the shell (equation (21)) implying less significance
of the fluid. These is also an accompanying non-propagating bending wave (equation (22))

Figure 8. The non-dimensional wavenumbers (ka) versus the non-dimensional frequency (va/c). Very heavy
fluid loading (soft rubber/water) (b=4×104), internal positive or negative pressure (gp =21·5, zero axial force
(x=0). (a) Real part; (b) imaginary part. Key as for Figure 4.
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Figure 9. A pressurized pipe with an end load.

at these frequencies indicated by the imaginary wavenumber, s=3. Below the ring
frequency these two bending wave roots are complex indicating no energy transfer.

It would appear from these arguments that between normalized frequency values of 0·2
to 20, there is no propagating wave in the fluid.

For normalized frequencies greater than 20 a propagating wave re-appears in the fluid
(s=4). This has the real wavenumber of an acoustic wave in a hard-walled pipe (equation
(26)). It is clear, therefore, that such a tube would be useful in suppressing fluid-borne
waves and pipe wall waves over a broad range, provided the internal pressure requirements
considered in the next section were not a limitation.

3.4.     (b=4×104),     ,
   (   )

The conditions of the previous example were repeated but with the inclusion of an
internal pressure, P0, of 105 N/m2. The non-dimensional pressure parameter, gp , where
gp =(P0a/Eh)(1− m2), took a value of 0·75, which is quite close to unity. The wavenumbers
are plotted in Figure 7. The effect of pressure on the shell compressional wave (s=2) is
negligible. Over the whole frequency range the wavespeed is given in equation (18) or the
wavenumber a2 =V.

To investigate more easily the other wavenumbers the previously established s=2
wavenumber can be eliminated from the wavenumber polynomial in equation (16) by
setting as�V. To neglect the s=4 fluid-borne root, it is assumed that as�af . Equation
(16) then becomes

1− g2
p −V2 + xa2

s + a4
s r− b(a2

f /a2
s )− (m− gp )2 =0. (26)

In the present case there is no axial tension (x=0), and Poisson ratio, m, is 0·5. Equation
(26) then becomes

(1− m2 − g2
p −V2)a2

s + a6
s r− ba2

f =0. (27)

At frequencies less than the ring frequency, as is negligible and the bending may be ignored,
giving the wavenumber of a modified Kortweg wave,

a2
1 = ba2

f /(1− m2 − g2
p ). (28)

The pressure term, gp , causes an increase in the wavenumber, ultimately increasing the
attenuation of these waves. For gp =0·75, a1 was increased by a factor of 2 by including
g2

p if damping is present.
It is also interesting to note that a positive or negative pressure causes an equal softening

effect as expressed in the g2
p term. The softening effect with positive pressure arises from

the accompanying increase in pipe radius offering an increasing area to the radial pressure.
The negative pressure causes softening by encouraging the slope of the wall in the axial
direction. These two effects are equal.

The remaining wavenumbers are associated with bending and are almost unchanged
from the zero static pressure case previously reported.
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By using equation (27) some observations may be made concerning the stability of the
tube under internal positive or negative pressure. The first term (in a2

s ) tends to control
the ring frequency, occurring when

1− m2 − g2
p =V2. (29)

At frequencies lower than the ring frequency the tube radial motion is controlled by the
circumferential membrane stiffness. At frequencies higher than the ring frequency the
radial inertia becomes dominant. Equation (29) indicates that increasing or decreasing the
internal pressure lowers the ring frequency due to tube softening. If the pressure magnitude
is increased until

g2
p =1− m2,

the ring frequency drops to zero. At this point the tube stiffness does not control the radial
motion, which could be interpreted as a state of buckling or catastrophic expansion. The
buckling is also greatly influenced by the bending stiffness and axial compression.

Figure 8 gives the wavenumbers when the pressure is increased above this point, i.e.,
gp =1·5. Only the propagating wave (s=2) in the shell exists. The lack of wall stiffness
does not allow a fluid wave (s=1) to propagate. This would be a good attenuator, but
probably cannot exist in practice for the reasons stated.

3.5.     (b=4×104),    (g =0·375),
   (x=0·75), ( /)

If a tube with an internal pressure, P0, were plugged (as in Figure 9), equilibrium of
forces in the axial direction would give an axial tension N0 of pa2P0 in the wall. This value
of axial tension was applied in the positive sense, giving the wavenumbers displayed in
Figure 10. This corresponds to the case of an internal pressure in a conventional flexible

Figure 10. The non-dimensional wavenumbers (ka) versus non-dimensional frequency (va/c). Very heavy
fluid loading (soft rubber/water), positive internal pressure, tensile axial load. (a) Real part; (b) imaginary part.
Key as for Figure 4.
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Figure 11. The non-dimensional wavenumbers (ka) versus non-dimensional frequency (va/c). Very heavy fluid
loading (soft rubber/water) (b=4×104), negative internal pressure (gp =−0·75), compressive axial force
(x=−0·375). (a) Real part; (b) imaginary part. Key as for Figure 4.

tube. The normalized tension parameter, x, was x=N0(1− m2)/Euh2pa. The significance
of these membrane stresses was investigated by using equation (26). In this equation the
lowest wavenumber in the wall is neglected, i.e., the s=2 wave, which is independent of
axial wall stress. The axial stress acts as a restoring force in a way similar to bending forces.
The bending forces are not significant at frequencies below the ring frequency and so the
a6

s r term was ignored. Equation (26) becomes

Aa2
s + xa4

s − ba2
f =0, (30)

where A=1− m2 − g2
p −V2. The roots of this expression are

a2
s =−(A/2x)[12 (1+4xba2

f /A2)1/2]. (31)

T 1

Test parameters

Normalized Normalized
Fluid loading pressure tension,

Test Materials b gp x

1 Perspex/air 2·4×10−4 0 0
2 Perspex/water 4·5 0 0
3 Soft rubber/water 4×104 0 0
4 Soft rubber/water 4×104 20·75 0
5 Soft rubber/water 4×104 21·5 0
6 Soft rubber/water 4×104 +0·375 0·75
7 Soft rubber/water 4×104 −0·75 −0·375
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At low frequency values, below the ring frequency, a2
f is small and the right-hand term is

less than unity. Equation (31) has two approximate pairs of solutions:

a3 12i01− m2 − g2
0 −V2

x 1
1/2

, VQ 1, a1 =
ba2

f

(1− m2 − g2
p −V2)

. (32)

The s=3 wave is the exponentially decaying tension wave before cut-on of the
propagating wave. A is constant with frequency as seen in Figure 10(b). The s=1 wave
is the propagating Korteweg wave, unaffected by the tension, x.

At frequencies above the ring frequency (V2 q 1− m2 − g2
p ) the wavenumber term a3

becomes positive indicating a propagating tension wave. The wave speed from equation
(32) reduces to c3 =zN0/rh. This is the wave speed of a string in tension. In summary,
once the influence of the ring stiffness is lost, above the ring frequency the axial tension
forces control the propagation in the tube. A comparison between Figures 10 and 7
indicates that the tension slightly lowers the wavelength of s=1. Increasing the tension
will decrease the s=1 wavenumber, increasing the sound speed and transmission.

3.6.     ( /) (b=4×104),  

 (g =−0·375),    (x=−0·75)
A tube that is negatively pressurized, −P0, applies a compressive axial force in the shell

if the end is closed (Figure 9). The axial force is −pa2P0.
From Figure 11(a) it can be seen that at low frequencies there are three propagating

waves. The s=2 shell wave is unchanged from previous cases, being independent of the
tension. The s=1 fluid wave only exists until the normalized frequency is 0·1. At this
frequency it meets a propagating tension wave, s=3, which, from equation (3·15), can
be calculated to have a size a3 =z(1− m2 − g2

p )/x. At higher frequencies there is probably
not significant fluid wave transmission as the only other real wavenumber, s=4,
corresponds to the bending wave. Unlike the previous example, the wall is now in
compression rather than tension and so the tension waves do not exist or cannot
propagate. If such conditions could be obtained, this device would serve as an effective
attenuator.

There is a complex wavenumber between V=0·1 and V=2, but this should not
propagate well.

5. CONCLUSIONS

The equation of motion for axisymmetric waves in a fluid-filled orthotropic, internally
pressurized and axially tensioned tube was derived. The wavenumbers, or roots, of this
equation were plotted for isotropic tubes under various loading conditions. At any
frequency there are four wavenumbers or wave types. Under almost all conditions an
axially propatating compressive wave occurs in the shell; this wave involves little radial
motion and is almost uncoupled from the fluid. It is also independent of internal pressure
or axial stress.

For frequencies less than the ring frequency, the Korteweg wave, involving fluid inertia
and radial wall compliance, propagates. Increasing pressure in a positive or negative sense
softens the pipe wall, slowing this wave and also lowering the effective ring frequency.
When the ring frequency approaches zero, buckling or catastrophic expansion will occur.
This condition can be made less likely by increasing the axial tension, while a compressive
axial load will further exacerbate the problem.
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For frequencies greater than the ring frequency, pipe wall bending controls the
behaviour of the fluid-borne wave. Axial tension will increase the wave speed, reducing
possible attenuation (in the presence of damping). Conversely, compressive axial stress can
cause a condition in which the fluid-based waves cannot propagate.
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APPENDIX: CALCULATION OF THE ORTHOTROPIC ELASTIC MODULES
PROPERTIES OF AN ELASTOMER STIFFENED WITH A WIRE MATRIX

Consider a piece of homogeneous material as shown in Figure A1, of thickness h, which
is reinforced by inclined wires. The elastic modulus for the two-component material can
be regarded as the sum of the individual components: i.e., the wire element (b) and the
homogeneous element (a). This is on the assumption that the two components are only
linked at the boundaries, tending to underestimate stiffness because of the lower restraint.

Figure A1. The two-part material matrix as a sum of a homogeneous material and wire element.
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Figure A2. The stress and strain on an element.

For an orthotropic material the matrix of elastic properties is

6ox

oy7=$ 1/Ex

−nx /Ex

−ny /Ey

1/Ey %6sx

sy7. (A1)

sx and sy are the stresses in the x and y directions, and ox and oy are the corresponding
strains shown in Figure A2. By inverting the matrix,

6sx

sy7=
1

1− m2 $ 1/Ex

−nx /Ey

ny /Ex

Ey %6ox

oy7, (A2)

where Ex and Ey are the Young’s moduli in the x and y directions. nx and ny are the Poisson
ratios in the x and y directions defined by equation (A1). For convenience,

m2 = nxny . (A3)

The elastic properties for the homogeneous material can be written from equation (A2)
as

{s}=
Ea

1− n2
a $1

na

na

1%{o}, (A4)

where

{s}=6sx

sy7, {o}=6ox

oy7,

by setting Ex =Ey =Ea , and nx = ny = na .

Figure A3. (a) The stresses on an inclined wire. (b) The extensions imposed on an inclined wire.
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For the wire component (b), the elastic properties can be obtained by considering a
single inclined wire as shown in Figure A3. Displacements, ex and ey , are imposed on the
wire causing stresses in the x and y directions, sx and sy . The axial extension of the wire,
e, is given, from Figure A3(b), as

e= ex sin u+ ey cos u. (A5)

The wire length is l/cos u; hence the axial strain o is

o=(e cos u)/l. (A6)

The force in the wire, sAb , is given from the Young’s modulus, Eb , and the cross-section
area of the wire, Ab :

sAb =Eb (e/l) cos uAb , (A7)

The mean stresses over the element edges in the x and y directions are obtained by resolving
equation (A7):

sx =(EbAb /l 2h)e cos u sin u, sy =(EbAb /l 2h tan u)e cos u. (A8)

where h is the element depth. The extensions in the x and y directions, ex and ey , are related
to the strains, ox and oy , by

ex = oxl tan u, ey = oyl. (A9)

Therefore, by substitution of equations (A9) and (A5) into equation (A8), the elastic
modulus matrix is found to be

6sx

sy7=
EbAb

ch $ sin4 u

sin2 u cos2 u

sin2 u cos2 u

cos4 u %6ox

oy7, (A10)

where c= l sin u is the spacing between wire centres. For a wire going across the other
diagonal, the angle f= p− u. The relationships between u and f are cos f=−cos u

and sin f=sin u. The elastic modulus of the inclined wire will therefore be the same
as shown in equation (A10), giving the combined expression for crossed wires as

6sx

sy7=
2EbAb

ch $ sin4 u

sin2 u cos2 u

sin2 u cos2 u

cos4 u %6ox

oy7. (A11)

A comparison of equations (A11) and (A12) gives Poisson ratios of ny =cos2 u/sin2 u and
nx =1/ny, making m2 = nxny =1.

If u is 45°, nx = ny =1. This is the expected Poisson ratio for a liquid constrained to move
in only two dimensions. The compression in one co-ordinate is matched by the extension
in the other. For general angles, Poisson ratios greater than unity can be obtained.

To obtain the combined elastic modulus, equations (A11) and (A4) are added. First,
allowance must be made for the presence of the wire causing a decrease in the volume of
the soft material, as described in equation (A4). The reduced volume increases the imposed
strain but decreases the resultant stress by the same amount, i.e., (1−2Ab /ch), giving no
change to the form of equation (A4). The combined elastic modulus is therefore the sum
of equations (A11) and (A4): i.e.,

{s}=$ E'a + aE'y t4

E'ana + aE'y t2

E'ana + aE'y t2

E'a + aE'y %{o}, (A12)
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where E'y =Eb cos4 u is the wire modulus in the y direction, t=tan u, a=2Ab /ch is the
wire to soft material cross-sectional area ratio, E'a =Ea /(1− n2

a ) is the soft material
modulus and gE =E'a /aE'y . Equation (A12) can also be written as

{s}=(aE'y +E'a )$ (gE + t4)/(gE +1)
(gEna + t2)/(gE +1)

(gEna + t2)/(gE +1)
1 %{o}. (A13)

By comparison with equations (A1),

E'y =Ey /(1− m2)= aE'y +Ea /(1− n2
a ), E'x =Ex /(1− m2)= aE'y t4 +Ea /(1− n2

a ),

nx =(gEna + t2)/(gE +1), ny =(gEna + t2)/(gE + t4).

Equation (A13) is now positive definite and may be inverted to give

{o}=
1
D $ gE +1

−(gEna + t2)
−(gEna + t2)

gE + t4 %{s}, (A14)

where D= aE'y [g2
E (1− n2

a )+ gE (1−2t2na + t4)],

or D=E'a (gE (1− n2
a )+ (1−2t2na + t4)).

Two special cases are on interest. (i) If a tends to zero, gE tends to a and the matrix
tends to

{o}=
1
Ea $ 1

−na

−na

1 %{s},

as for a uniform linear material. (ii) If gE tends to zero, and if tan u=1, Poisson ratio,
nx = ny =1, and

{o}=$ 1
−1

−1
1% 1− n2

a

Ea
{s}.

As expected, the minimum value of the Young’s modulus is Ea for the rubber. The Young’s
modulus increases in the direction of stiffening by a factor proportional to (tan u)−4.
Poisson ratios greater than unity can occur, but these are associated with high moduli and
so do not produce outrageous displacements.


